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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
REPORT
DEPARTURE TRAJECTORIES FOR INTERPLANETARY VEHICLES
By W. E. Moeckel
ABSTRACT

General,expressionshare derived for the velocity penalties associ-
ated with the inclination of the orbital plane of the destination planet.
for arbitrary transfer orbits. The effect of the selected trajectory on
the launch azimuth and inclination at the darth's surface is discussed in

detail and a procedure for optimizing launch time to obtain maximum bene-

fit from the earth's rotation is derived. The analysis is applied to
typical minimum-energy and excess-energy Venus trajectories. Modifica-
tions required for interplanetary launches from satellite orbits are
discussed.

Results indicate that launching can take place_from any point on the
earth's surface with velocity penalties not greater than that due to loss

A\
of the benefit of the earth's rotational component. Penalties associlated
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with launching from satellite orbits can be much more severe, amounting to
loss of the benefit of the orbital speed, if the orbit plane is im-
properly inclined.
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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION
REPORT

DEPARTURE TRAJECTORIES FOR INTERPLANETARY VEHICLES

By W. E. Moeckel
SUMMARY

General expressions are derived for the velocity penalties associ-
ated with the inclination of the orbital plane of the destination planet.
for arbitrary transfer o;bits. The effect of the selected trajectory on
the launch azimuth and inclination at the earth's surface is discussed in
detail and a procedure for optimizing launch time to obtain maximum bene-
fit from the earth's rotation is derived. The analysis is applied to

typical minimum-energy and excess-energy Venus trajectories. Modifica-

tions required for interplanetary launches from satellite orbits are
discussed.

Results indicate that launching can take place from any point on the
earth's surface with velocity penalties not greater than that due to loss

of the benefit of the earth's rotational component. Penaltles assoclated
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with launching from satellite orbits can be much more severe, amounting to
loss of the benefit of the orbital speed, if the orbit plane is im-
properly inclined.
INTRODUCTION

The problem of determining the correct magnitude and direction of
the launching velocity réquired to reach another planet from a given
point on the earth's surface at a given time is a fairly complicated one.
Solution requires detailed consideration of (1) the effect of launching
time and the inclination of the orbital plane of the destination planet
on the required magnitude and direction of the hyperbolic velocity vec-
tor relative to the earth, and (2) the effect of launch site and launch
time on the initial velocity required to attain these hyperbolic veloc-
ities. In the present paper, general expressions are derived relating
these parameters, and the results are applied to particular Earth-Venus

trajectories.
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RELATIONS BETWEEN HELIOCENTRIC AND HYPERBOLIC VELOCITY

N pole of
1 ecliptic

To sun

Sketech 1

Shown .in sketch 1 is the general relationship between the helio-
centric velocity, V1, required at the earth's orbit to reach the desti-
nation, and the hyperbolic velocity, ZE’ required to attain this value
of ZE' The line to the suyn and the earth's orbital velocity vector
Vg determine the ecliptic plane. The angles o and @ are the in-

clination of the heliocentric velocity and the hyperbolic velocity
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relative to the orbital velocity Vg: The angles oy and 61 are the
inclinations of Vi and n northward from the ecliptic, and the angles
a, and 6, are the inclinations of vy and vy ..~ . . toward the

sun from vg. The angles @, and 6, are the northward inclinations of
_E g 3 3
normal to the ecliptic.

vy and vy with plane / If the destination lies in the ecliptic plane,

a; and 6, are zero, and if the transfer trajectory is tangent to the

1
earth's orbit, as and 6, are zero.
In the sketch v; 1s shown as less than vy, as it might be for

trajectories to the innerplanets. In general, the magnitude of v; and

its angle @5 relative to vy are determined from the co-planar problem,

i.e., if there is no midcourse correction, the destination must lie in
the plane determined Dby Z; and the line to the sun 0-8S. Thus, Zl
and a, can be considered known functions of launching time. The in-
clination of the trajectory plane, @, relative to the ecliptic plane,
can also be calculated as function of the position of the points of de-

parture and arrival, as shown below.
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From sketch 1,with Vi, @. and ap known, the remaining parameters

may be calculated from the following equations: !

2
cos“ay coszaz

coséa = 5 5 5 > (1)
cos“a; + cos“ay - cos“a, cos“u,
2 _ 2 2.2 »
v§ = (vE - vycos a)’ +visin®a (2)
Vi
sin 8 = — sin a (3)
Vh
_ V,Cos a
tan 6, ;tgsg—a tan ay (4)
. vicos a :
an 92 = W tan an . (5)
cos 6 -
cos 93 = EO—S-_QE (6) ;
cos a
cos @z = cos ag (7)

Determination of s The angle al,,which is the inclination of

the plane containing the sun, the earth at departure, and the destination
at arrival, can Dbe determined as function of time with the aid of sketch
2. Let WO be the angular distance of the earth from the line of nodes
at departure and Wl the angular distance of the destination planeﬁ from
the line of nodes upon arrival of the vehicle, both angles being measured

in the direction of motion of the planets. The angle i 1is the inclination
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ine of nodes

pestination upon arrival

Earth ;E-departure

Sketch 2

of the orbital plane of the destination planet. Some trigonometric

manipulation shows that for sinzi< 1,

-sin 1 sin Wl

tan a; =

cos Ypsin ¥, - sin Wocos V1

(8)

This relation shows, as might be expected, that ay 1is 90° if Vo = ¥y,

except when V¥; = O.

In other words, when departure and destination
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points are 180° apart, the only plane containing both of these points and
the sun is perpendicular to the ecliptic. This trajectory, of course, is
prohibitively expensive in terms of velocity required, since the orbital
perpendicular

motion of the earth must be completely canceled, and a velocity vy /to
the earth's orbit must be provided. Obviously, other methods of reaching
the destination when woq- *1 will require less energy.

Alternative methods include: (1) launching when the earth crosses
the nodal line (Wo = O),‘at which time, from equation (1), a, = -i, (2)
timing the arrival to coincide with a nodal passage of the destination
planet (wl =0, a = 0); or (3) launching directly into the orbital plane

of the destination planet. The third alternative, as shown in sketch 3,

Plane of destination planet

d
Ecliptic plane 5 l,

Sketch 3

requires fairly high launch velocity unless the earth is very close to a

node. The distance between the ecliptic plane and the plane of the
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destination planet is given by

d = Bpsin 1 sin ¥ (9)
where RO is the distance from Earth to Sun. Unless V5= O, 4 will be
sufficiently large that the launch velocity to reach d must be very
close to escape velocity. The required hyperbolic velocity must then be
provided with an additional application of thrust when the distance 4
is reached.

The procedure in sketch 3 requires thrust application at fairly
large distances from the earth. If mideourse corrective thrust is pro-
vided, other possibilities exist. For example, if the departure and
arrival points are on opposite sides of the nodal line, an impulse can be
provided, when the vehicle reaches the nodal line, which transfers the
trajectory to the orbit plane of the destination planet. The impulse
needed depends on the angle and velocity with which the vehicle approaches

the nodal line (sketch 4). Thus

?; = sin i cos Vv (10)

where Vv is the angle of approach relative to the normal to the nodal line.
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Since v is not far from zero for most trajectories, and v 1is of the
order of 20 miles/sec, Av is of the order of 1/2 to over 1 mile per sec-
ond for Venus and Mars trajectories. In general, it is necessary to cal-
culate the Av required at many points along the trajectory to determine
when a midecourse correction is minimized. One may conclude, however,
that the most pfomising ﬁethods of allowing for the inclination of the
orbital plane of the destination planet are alternatives (1) and (2)
above, or failing this, choosing a trajectory for which Wl and WO are
sufficiently far apart so that % (equation (8) is relatively small.
Such trajectories, of course, are excess energy paths in ferms of co-
planar orbits, so that an optimum, or minimum-energy, trajectory exists
which is different from a Hohman ellipse and requires, in general, higher
launch velocity.
Farth Launch Conditions to Attain Specified Hyperbolic Velocity

The hyperbolic velocity vector required to produce the heliocentric,
velocity Zl can be achieved by launching from points on the earth's sur-

face vwhich lie on a circular cone whose axis passes through the earth's
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center and is parallel to vy, and whose half-angle is B, where B 1is
the great-circle angle from the surface intersection of the diameter

parallel to vy, to the launch point (sketch 5). This coordinate system

/N pole of
ecliptic

Sketch 5

will be denoted as the "hyperbolic" system, in which the north pole N,
is arbitrarily taken to be latitude N, = 90° along the great circle
that contains the pole of the ecliptic plane. The latitude is measured

northward from the equator, and longitude along the equator.
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counterclockwise from O. ZFrom each point on the launch circle, the same
hyperbola is followed to achieve ZE' As B 1is increased larger inclina-
tions -3 of the launch velocity vector v, relative to horizontal must
be provided to attain wvy. A minimum value, By, of B exists (see
sketch 6) for which Vo 1s horizontal. TFor f less than Bg, launch

angle & would be negative. The mathematical relations between vy, B,

Vg, and & are obtained as follows:

Yh

i VO

ARy

:Sketeh 6

From the energy equation
2 _ g B o2 (11)
8o that the final launch velocity is independent of B if it 1s always
obtained at the same radius ry. . " . Only the inclination &

changes. However, the velocity vy 1s the resultant of the local
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Sketch 7
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component of the earth's rotational velocity and the velocity vy,

—

that

must be provided by the launch motors. Consequently, vy changes as 8
increases, but the precise nature of this change depends on the relation-

ship between the "hyperbolic" coordinate system and the terrestrial sys-

tem, which will be derived later.

To determine & as a function of B, we utilize the general equa-

tion for a conic-section trajectory:

z
o 0w

"1+ e€ecos Q@ , (12)

where h is angular momentum, pu the gravitational constant for the

Earth, € the eccentricity, and ¢ the trajectory angle measured from

(see sketch 7).
the axis of the hyperbola/ It is easily shown (see, for example, ref. 1)

that

2 2
Yoo _ 4, . Yoo

where

2 -1 (13)
Vo0

Tos V000’ and Voo are the radius, circular velocity and actual

velocity at the axis of the hyperbola (¢ = 0). Consequently,

e
i} _ Vgo Vh + Zu/r (14)
o £ 4 (v2 - Eleos o v2 cos @
o 00 " rg 1 r 1
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where the third term is obtained by application of the energy equation.

The inclination © is given by (see ref. 1)

, 2 2
Vi/ro <rl> <V50 ) r1 Voo

tan § = -— - +2 == -
> Voo To “;ro To “;ro
r . \2 r
el oo n @)
0) 0 0]
= - (15)

To determine B8, with v, and r; specified, we must, therefore,
determine To (or VcOO) as function of B. We note first from sketch 7
that
B+ (9, - P1) = 180° (16)
where @ is the value of ¢ when r - =. From equation (12), this
value is

u/r |
cos @, = - =70 (17)

€ 2
Substituting ¢; from equation (16) into equation (14), with equation

(13) to eliminate ¢, we obtain an equation expressing rg as function

of B for any value of VE and ry. The expression for BO is obtained
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by setting @ = 0 (rl/rO = 1) in equation (16):

cos By = cos (180 - q_)

Two other relations are

2
Ve00
Z 2
Yh + Ve00

-cos @ = (18)

useful before proceding to transformation of co-

ordinate systems, namely, the distance of the asymptote from the earth's

axis (sketch 5) and the equation for the launch circle. From conserva-

tion of angular momentum,

pVh =T OVOO
or
2
v
L -1 42 cgo
To Vi

and from geometry:

cos %hcos Ph = cos B

(19)

(20)

Equation (19) shows that the asymptote is normally within a few Earth

radii of the axis of the hyperbola.




- 15 -

1 Relationship Between Coordinate Systems

2 In the celestial coordinate system, the intersection of the ecliptic

.3 plane with the earth is the equator, and the direction of the vernal

4 equinox is the origin of coordinates. The relationship between this

5 N pole of

ecliptic

6 '

7

8

9
10 -

Vernal
equinox
11
12
13
14
Sketch 8
15 coordinate system and the hyperbolic velocity is shown in sketch 8. The
i6 general relationship between latitude and longitude in two great-circle
e

17 systems is as follows (see appendix A).
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cos kzcos;fz

cos N = Cos T (21)
cos Apptan Ap .
tan T = - cosprz + sin Apptan Ty (22)
where A is the latitude in system 2 of the pole of system 1, and T
2p 4

is measured’ counterclockwise from the intersection of the two equators
(90O clockwise from great circle through vh). Thus, if system 2 is the
hyperbolic system, denoted with subscript h, and system 1 the ecliptic

system (without subscripts), then

o
Ao= N3 To=Typ - 9 Agp = 90 + 63
(23)
M= AT =T -90° - (T, +6,)
1 Vg

Hence,

cos Nycos (Ty - 90°) cos N,sin Ty, (20)

- 24

E 2

-cos (90 + 63)tan N,
CcOs (I'h - 9007

+ sin (90+ 65)tan y - 90°)

0y —
tan (T - FVE 6, - 90 ) =

or

sin Oztan N, ‘
+cot (T, + 6 -T) - cos 6z cot T'y (25)

2 = sin I'n

Equations (24) and (25), together with equation (20) -permit. calcula-

tions of the celestial latitude and longitude of the launching circle as
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function of B. The celestial longitude of vg is
o _ 360

r =T_ -9

o]
% 5 = %z (t - tyg) - 90 (26)

where tVE is the time of the vernal equinox (March 21), and Ig 1is the
celestial longitude of the sun.

To convert to terrestial latitude and longitude (or hour angle),
equations (21) and (22) ;re again applied; this time with system 1 being

the terrestial system and system 2 the celestial, or ecliptic system.

The coordinates are shown in sketch 9. Denoting celestial coordinate
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TN pole of ecliptic

Terrestrial N pole *

23,5°

rg=T, // \

equinox \ =T, Cele:tial
equator '
T

errestrial
\ equator

<
5 N\

To sun

\

Sketeh 9
without subscript, and terrestial coordinates with subscript E, equations

(21) and (22) yield:

cos A cosIT
cos I

COs )\E (27)

-sin 23.5 tan A
cosT

tan I'g = + cos 23.5 tan T (28)
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It remains only to determine the hour angle as function of Tp. The
zero-point for t%e hour angle will be taken as local apparent nobn, where
the sun is at meridian. Thus, the hour angle y after local noon is
given Dby
Y =Tg - Tgg (29)
where, from equation (285 (with A= 0)
tan Tpg = cos 23.5 tanTg (30)
and TI'g 1s given by equgtion (28).

Launch Azimuth and B

The launch azimuth and B can be calculated as functions of terrestial

latitude and longitude with the aid of sketch 10. It is necessary first to

Ng

determine the angle B of the . . . launch point.

Vernzl
equinox

Sketch 10
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From the cosine law of spherical trigonometry,

cos B = sin Ag sin Agg + cOs Ag cos Mgy COS (Tg - rEO) (31)
where Aggp and FEO are the terrestial latitude and longitude of the
intersection of the diameter parallel to zg‘\with the earth's surface.
These angles are obtained from sketch 8 and equation (27) and (28).

Thus, in celestial coordinates, Iy = T

. + 003 )O = -8z, so that

+sin 23.5 tan 93

tan Tpqy = + cos 23.5 tan (T, + 6,) (32)

cos (Tyg + 62) g

_cos 63 cos (I + 65)
o8 Ngy = E (33)

Ccos PEO

The launch azimuth, np, is given by

sin a sin B

ST = T gin p

where a and B are obtained by the cosine law.

cos a = cos Agy CcOS (PE - FEO) (34)
cos B = fiE_ZEQ (35)
sin a

The resulting equation fer ngp 1is

‘ W/l - sinzkEo - coszkEo cos2 (Tg - Typ)
sin ng = (36)
sin B
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The angle ng, together with the inclination & relative to hori-
zontal, permits calculation of the orbital velocity vy that must be
provided by the launch motors when the earth's rotational velocity is

considered. As shown in sketch 11, the three components of vy, are

Sketch 11

VL’up = Vg sin e}

VL, north - 'O €08 B cos ng (37)
vL,east = Vo cos B sin g -V

r

where V.. is the rotational speed of the earth at the launch latitude.
Thus, with v, = Vg cos %E

VI, = vg - 2vgv,.qcos B sin NEcos Ag + VEOcoszkE (38)

This equation, together with those previously derived relating B, Tgs
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kE and vy with the required hyperbolic velocity, permit calculation of
the required launching velocity vy, as function of launching latitude
and time of day for any chosen interplanetary trajectory. Equation (38)
shows, as does sketch 10, that launching can be accomplished from any
latitude on‘the earth with a maximum velocity penalty equal to loss of
the benefit of the earth's rotational speed. The maximum benefit of this
rotational speed occurs when (cos & sin Mg Cos %E) is maximized, if
launch latitude is arbit?ary, or when (cos d sin nE) 1s maximized if
launch latitude is fixed. The best launching latitude is, therefore,
determined by the direction of the required hyperbolic velocity vector
and.is not necessarily the equator.
Application to Earth-Venus Trajectories

A convenient starting procedure to determine favorable launching
periods 1s to consider the velocity increments needed as function of
time on the basis of co-planar analysis. Many possible trajectories
can be taken, but only two families of transfer ellipses are considered

herein. Shown in figures 1 and 2 are the co-planar launch velocities
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needed to reach Venus and Mars, respectively, along these two families.
The results were calculated from the data given in reference 1. The
four curves correspond to following the long (L) or short (8) branches
of ellipses tangent to the earth's orbit (E) and tangent to the Venus
or Mars orbit (V or M). The Av's shown are Vo - Ve00s ¥WRETe Voo
is the circular velocityAat the assumed launch radius of 1.1 times the
radius of the Earth. (Possible benefits to be derived from the earth's
rotation are not considered in these Av's.) The orbits of the planets
were assumed to be circular which, in the case of Mars, can result in
errors of about 0.1 miies/seé in Av. Also shown in figures 1 and 2
are the distance and angle between earth and planet as function of time.
The departure and arrival patterns repeat themselves during each synodic
period.

The crossings of the Venus-Earth nodal line are also indicated. As
pointed out in an earlier section, the most convenilent launch times, from

the standpoint of allowing for inclination of the Venus orbital plane,

are those for which departure takes place when Earth crosses the nodal

"
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line, or arrival occurs when Venus crosses the rdodal linme. Figure 1
shows that the June 7, 1959 minimum-energy launching is unique in that
the Earth is crossing the nodal line at departure, and Venus is crossing
the nodal line at arrival (Nov. 2, 1959). For this date, therefore, the
vehicle could be launched directly either into the ecliptic plane or in-
to the Venus orbital plane. During the following synodic period, a
slightly excess energy trajectory along an E-S ellipse (launching about

2 days after minimum-energy) produces an arrival time about May 15, 1961,
when Venus is crossing the nodal line (@ scending node). In general,
during each synodic period, there exists a launch date and trajectory
which either coincides at departure with an Earth node (June 7 and Dec. 7)
or coincide at arrival with a Venus node. Table I showsthe range of
departure and arrival dates, during the next five synodic periods, for
which Avy does not exceed 2.31 miles/sec (0.2 miles/sec above minimum-
energy AVO). In three of these periods (first, second and fifth) an
Earth crossing of the nodal line occurs during the departure period, and

in all periods a Venus node. occurs during the arrival period. In many
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cases, however, the required trajectory for these dates may be incon-
venient from the standpoints of guidance and communication requirements,
or duration of the trip; or departure times may be delayed for other
reasons. It is, therefore, desirable to determine the amount of excess
Av  required as funection of launching data to allow for inclination of
the Venus orbit. Such computations become rather involved, because many
families of trajectories should be considered, in addition to the two
shown in figures 1 and 2. For illustration purposes the computational
procedure will be carried out for only one family of trajectories,
namely, the EL family, and for the 1959 synodic period.

Since the co-planar E-L trajectories require resultant heliocentric
velocities v; parallel to vg (sketch 1) the angles a, and 6, are

zero, and a, = «

1 = 0, where o 1is the inclination of wv;

north from ecliptic. Table II shows the velocities and angles calculated

for these trajectories as function of departure days after June 7.
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TABLE II. - VELOCITIES AND ANGLES FOR E-L VENUS TRAJECTORIES

Departure Arrival Vi oy V2 g, ANO, Av, BO,
days after | days after | mile deg jmile deg | mile | mile deg
June 1 Nov. 2 sec sec sec sec

0 0 16.95 0 1.56 0 2.121 2.12 | 25.5

1 2.4 16.95} -4.6 | 1.94{ -44.5} 2.12]| 2.22 | 31.4

5 12 16.92| -4.5]2.03}1-39.41 2.13| 2.27 | 32.6

20 41 16.74| -4.3]2.19 | =35.2] 2.18| 2.30 | 3&.56

45 70 . 16.41 | -3.4|2.34 | -24.6] 2.27 | 2.34 | 36.8

60 85 16.12 | -2.4 }2.45 | -16.2} 2.33| 2.38 | 38.2

The angle o was calculated from equation (8), vy from equation
(2), @ from equation (3), vy from equation (11), and By from equa-
tion (18). The Av's in this table are Vo - Vc,0, With Vo o ‘taken
as 4.69 mile/sec, the value at a radius of 1.1 times the earth's radius.
The velocity increment Avy is the co-planar value, and Av the value
allowing for inclination of the Venus plane. These values are plotted
in figure 1 for comparison (dashed curve). This plot shows that the
effect of inclination on Av 1is not large. However, if the minimum-
energy launch had not colncided with a departure orarrival node, the
angle o would be 90° at the "minimum energy" date, and Av would
have been extremely large indeed. A few days later, however, this pen-

alty in Av over co-planar values would be quitereasonable. In this
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case, the minimum-energy launch data, considering inclination, would
be some days before or after the co-planar minimum-energy data.

Table II shows that « and 6 Jump quite abruptly from zero to
a maximum value, and then decline as the trajectory plane approaches
the ecliptic plane. If the calculations were extended to about 90 days
after dJune 7, figure 1 shows that o and 6 would again be zero,
since arrival would then coincide with another Venus node.

From the angles given in table II, the problem of launching from

the earth's surface can be illustrated as in sketch 12 and 13.
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/

To Sun

No horizontal-launch point.

Sketch 12. - Launch situation June 7:

9 = o; BO = 25.5.

Ecliptic

Equator
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after June 7: 6 = - 35.2°, By = 34.6.
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Sketch 13. - Launch situation for E-L trajectory about 20 days
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Sketch 12 shows the approximate locationof the horizontal-launch cone for
June 7, and sketch 13 for June 27. For the June 7 date, the latitude

28° N lies outside the horizontal-launch circle, so that the resiltant
velocity Vo must have some inclination & at all times during the
launch day. To determine the best time of day for the launch, the
penalty due to increasing © must be balanced against the benefit

due to increasing ng (eq. 38 and sketch 11).

For the June 27 launch (sketch 13), latitude 28° N crosses the
horizontal-launch circlé at a time when the launch azimuth is not far
from East, so that the crossing time would be a favorable launch time.
Again, however, some benefit might result from waiting a little to
produce even more easterly launch before & has increased much.

The procedure to determine this optimum launch time is as follows:

From equation 15, the expression for ©® can be written

2 2
V200 "800  Vh - 2vcoo]
ten & = S -5+ 5 (39)
vecQ vVeO Vh + ZVCOOJ

where vigp = u/Tgs Voo = 4+69; vy = 1.56 for the June 7 launch and 2.19
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for the June 27 launch. From equations (14) and (16):

2 2
Vh + 2 V00
vZ00 " Vo
-cos(B + @) = %5 (40)
Vi + Ve0oo
) 2
cO Vg0
where @, 1is given by
-va
COS P = e .. 1 (41)
V2 + Vz V2
h c00 h
2 t!
Ve00

By varying VEOO’ ® is determined as functions of B. From equa-
tions (31), (32) and (33), Iy 1is determined as function of B. From
equation @6),QE is determined as function of PE' Thus, g and d
are obtained as functions of Ip. The best value of T'p is that for
which cos 8 sin ngp is maximum (see eg. (38)). The hour angle cor-

responding to this Ty 1is obtained from equations (24) and (30).

Results of computations for launch from latitude 28° N along the
E.L. path on June 27 are compared with results for the June 7 minimum-
energy trajectory in figure 3. In both cases, the launch velocities re-
quired from the engines, vy, can be very close to those that could be

obtained if the full value of the earth's rotational speed at that
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latitude could be utilized. The launch azimuth and inclination, as might

be expected, vary much more strongly with launch time than does the re-
quired launch velocity.
Launching from Satellite Orbits

The provedure described in the preceding sections for determining
launching requirements %rom the Earth's surface is, of course, directly
applicable to launching from the surface of any planet to return to
Earth. Some modifications are necessary, however, for trips starting
from satellite orbits. ‘In this case the planet's rotation is no longer
a factor, but the satellite velocity becomes an even more significant
consideration. The problem of launching from circular and elliptic
orbits has been discussed extensively in reference 2; only brief con-

sideration will therefore be given herein.
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Sketch 14

It is evident from sketch 14 that full advantage can be taken of
satellite velocity of the vehicle only if the plane of the orbit con-
tains the vector Vhs OF, in the "hyperbola" coordinate system, when
E%o = 0, where rho is.the longitude of the nodal line of the orbital
plane. In this case, the inclination of the orbital plane, Apy, 1s
arbitrary. Launching can take place when the vehicle crosses the cone
Bys SO that the added velocity is horizontal. If rho # 0, however, some
perpendicular deflection of the trajectory, n, must be provided; further-

more if the orbit plane does not cross the PBp-cone, on upward inclination
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5 must be provided. The actual launch velocity required is

¥ = v§ - 2vgvep cos B cos 1 + vig | “2)

where & 1is again determined as function of B from equations (14),

(15) and (16), and@ 7 1is determined by spherical trigonometry from

FhO and XQO' It is evident from equation (42) that the penalty as-
sociated with large values of & or 1 are much more severe than for
surface launches, since Vc,O is much greater than the rotational speed
of the Barth. For this reason, orbital perturbations and precessions
must be carefully precalculated if the vehicle is to remain in orbi?_for
appreciable periods of time before departure. Furthermore, as pointed
out in reference 2, difficulties may arise at the destination planet if
the return vehicle remains in orbit. The vehicle may settle into an
orbit with inclination as much as 90° relative to the departure direction,
so that much of the saving in propellant associated with remaining in
orbit rather than landing, may be negated. Reference 2, however, considers

methods whereby the penalty due to deflecting the orbital plane may be re-

duced by applying the correction impulse after the vehicle has attained

large distances from thq planet where the vehicle velocity 1s much reduced.
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CONCLUDING REMARKS

Analysis of the problem of launching interplanetary vehicles from
the surface of a planet indicate that such launchings are possible from
any latitude, with the maximum velocity penalty corresponding to loss of
the benefit of the Earth's rotational speed. The maximum benefit of this
rotational speed is derived when the product cos & sin ng cos XE is
maximized, where 8 1s the upward inclination of the launch velocity
vector, Mg is launch azimuth, and XE 1s launch latitude. The angles
® and Mg as determined by the direction of the required hyperbolic
velocity relative to the launch latitude.

The effect of inclination of the orbital plane of the destination
Planet is to change the required direction and magnitude of the hyper-

bolic velocity. The velocity penalty resulting from this inclination

is generally guite small - of the order of 0.1 mile/sec for Earth-Venus
trips - unless the departure and arrival points are nearly 180° apart

and neither point 1s at a2 node. In the latter case, an excess-energy
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path, in the co-planar sense, may require considerably less velocity
than the co-planar"minimum-energy" path.

Launching interplanetary vehicles from closed orbits around the
departure planet may impose much more severe velocity penalties, rel-
ative to co-planar values, than launching from theplanet's surface,
since the satellite velocity is much higher than the surface rota-
tional speed. If the satellite orbital plane has significant incline=.. .
tion relative to the rgquired hyperbolic velocity vector, much of the
advantage associated with remaining in orblt rather than landing on a
planet may be lost, unless the directlonal correction is applled at lerge
distances from the planet where the relation vehicle velocity is small.
Lewls Research Center

Natlonal Aeronasutics and Space Administration
Cleveland, Ohilo

AES-HAT/4-2-59
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APPENDIX A
SYMBOLS
A,B,C angles of spherical triangle

To

ry

Av

sides of spherical triangle

distance from ecliptic plane to orbital plane of destination
planet

angular momentum

angle of inclination at orbital plane of destination planet

distance of asymtote .of launch hyperbola from axis of launch cone

distance from Earth to destination planet

radius of Earth

distance from Earth to Sun

distance to trajectory from mass center

minimum distance of hyperbola from mass center

distance from mass center at which final launch velocity is attained
’ vl

velocity along trajectory

(vo - Veg) including inclination of orbital plane of destination
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Vro0

Vo

AVO

Voo

Vi
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circular (satellite) velocity

circular velocity at rg

circular velocity at Ty

Earth's orbital velocity

hyperbolic velocity relative to Earth

launch velocity provided by launch motors

rotation speed of Earth's surface at launch latitude

rotation speed of Earth's surface at equator

resultant launch velocity at ry

(vg - vep) from co-planar solution

trajectory velocity at ro

helioccentric velocity of vehicle at Earth orbit

inclination of _j} to :ﬁi

inclination of plane of heliocentric trajectory north of e€cliptic
plane

inclination of vy 1in ecliptic plane

inclination of v, from ecliptic plane
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great-circle angle of launch point from origin of "hyperbolic™
system

minimum value of B to attain vy

longitude in celestial coordinate system
longitude in terrestial coordinate system
terrestial longitude of radius parallel to ZE
longitude in hyperbolic coordinate system
celestial longitude of sun

celestial longitude of radius parallel to Vg

hour angle, relative to local apparent noon

inclination of vy from horizontal

eccentricity

launch azimuth,vcounterclockwise from local north
inclination of Vh relative to XE
angle between Mars and Earth

angle between Venus and Earth

inclination of plane of vy north from eeliptic plane
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inclination of vy in ecliptic plane

inclination of Vi from ecliptic plane

latitude in celestial coordiante system

latitude in terrestial coordinate system

terrestial latitude of radius parallel to 40
latitude in hypefbolic coordinate system

celestial latitude of sun

celestial latitude of radius parallel to vg
gravitational constant (9.6x104 mile53/8602 for Earth)

angle of intersection of vehicle path with nodal line

trajectory angle, measured from axis of hyperbola
value of ® for r -+ =

value of ¢ at ry

angular distance of Earth from nodal line‘

angular distance of destination planet from nodal line
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APPENDIX B

TRANSFORMATION OF COORDINATES

To transform from latitude and longitude in system 1 to latitude

and longitude in another system 2 (sketch B-1), use is made of the con-

ventional formulas of spherical trigonometry.

Sketch B-1

With the origin of longitude in both systems measured from the point of

intersection of the two equators, the required formulas are




10

12

14

16

17

- 42 -

sin A _sin B _sin C

sin a

sin b ~ sin c

sin b cos C = sin a cos ¢ - cos a sin c cos B

where

a=90—xlp A=A

b =90 - X B=90-I‘1
c=90-¥N C=90+I‘2

Substitution of (B3) into (Bl) and (B2) yields

cos Ay cos Iy = cos Ay cos ry

- cos Ay sin Iy = cos A1p sin N - sin Alp cos AL sin n

These equations result directly in

cos Xz =

tan Fz

il

cos ll cos I‘l
cos F2

tan
- S i I
cos x_Lp cos Tg + sin )‘lp tan Iy

(B1)

(B2)

(B3)

(B4)

(B5)

(B8)

(37)

]



10

12

14

16

17

-, o - 43 -

-

REFERENCES
1. Moeckel, W. E.: Interplanetary Trajectories with Excess Energy. Pre-
sented at Nint£ International Astronautical Congress, Amsterdam,

Aug. 23 to 30, 1958.

2. Bossart, Karel J.: Techniques for Departure and Return in Inter-
planetary Flight. Presented at 1958 National Midwestern Meeting,
Institute of Aeronautical Sciences, St. Louis, May 14, 1953.

w

o

."';




@

10

12

14

16

17

- 44 -

TABIE T
1 2
Departure Arrival Departure Arrival
Minimum June 7, 1859 | Nov, 2, 1959 Jan. 13, 1961 | June 9, 19581
energy
Av < 2.31 | May 2, 1959 Sept. 20, 1959|}Dec. 7, 1960 | April 27, 1961
Mile/sec to ‘ to to to
Aug. 2, 1959 | Jan. 22, 1960 ||Mar. 8, 1961 | Aug. 29, 1961
Venus node Nov. 2, 1959 May 15, 1961
nearest (ascending) (descending)
arrival
3 4
Departure Arrival Departure Arrival
Minimum Aug. 19, 1962 | Jan. 17, 1963 jiMar. 25, 1964 | Aug. 23, 1964
energy
Av <2.31 | July 14, 1962 |Dec. 5, 1962 Feb. 20, 1964 | July 11, 1964
Mile/sec to to to to

Oct. 14, 1962

April 5, 1963

May 20, 1964

Nov. 11, 1964

Venus node

Mar. 19, 1963

Sept. 30, 1964

nearest (descending) (ascending)
arrival
5

Departure Arrival
Minimum Nov. 2, 1965 |Mar. 30, 1966
energy
Av < 2.31 Sept. 28, 1965| Feb. 18, 1966
Mile/sec to to

Dec. 28, 1965

June 18, 1966

Venus node
nearest
arrival

April 12, 1966
(descending)
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